Publications

  1. Amati G, Mannouch JR, Richardson JO. 2023. Detailed balance in mixed quantum-classical mapping approaches. J. Chem. Phys. 159(https://doi.org/10.1063/5.0176291)
  2. Amati G, Runeson JE, Richardson JO. 2023. On detailed balance in nonadiabatic dynamics: From spin spheres to equilibrium ellipsoids. J. Chem. Phys. 158: 064113 (https://doi.org/10.1063/5.0137828)
  3. Amati G, Saller MAC, Kelly A, Richardson JO. 2022. Quasiclassical approaches to the generalized quantum master equation. J. Chem. Phys. 157: 234103 (https://doi.org/10.1063/5.0124028)
  4. Amin HMA, Attia M, Tetzlaff D, Apfel U-P. 2021. Tailoring the Electrocatalytic Activity of Pentlandite FexNi9-XS8 Nanoparticles via Variation of the Fe : Ni Ratio for Enhanced Water Oxidation. ChemElectroChem 8: 3863-74 (https://doi.org/10.1002/celc.202100713)
  5. Ban L, Tang HC, Heitland J, West CW, Yoder BL, et al. 2024. Ion imaging of spatially inhomogeneous nanoplasmas in NaCl particles. Nanoscale 16: 5695-705 (https://doi.org/10.1039/D3NR06368B)
  6. Ban LR, West CW, Chasovskikh E, Gartmann TE, Yoder BL, Signorell R. 2020. Below Band Gap Formation of Solvated Electrons in Neutral Water Clusters. J. Phys. Chem. A 124: 7959-65 (https://pubs.acs.org/doi/10.1021/acs.jpca.0c06935)
  7. Beckord J, Diulus JT, Novotny Z, Osterwalder J, Hengsberger M. 2023. Protected ultrathin cuprous oxide film for photocatalysis: Excitation and relaxation dynamics. Phys. Rev. Mater. 7: 045801 (https://link.aps.org/doi/10.1103/PhysRevMaterials.7.045801)
  8. Biasco S, Burri F, Houver S, Abreu E, Savoini M, Johnson SL. 2022. Impact ionization in low-band-gap semiconductors driven by ultrafast terahertz excitation: Beyond the ballistic regime. Phys. Rev. B 106: 235201 (https://doi.org/10.1103/PhysRevB.106.235201)
  9. Bondue CJ, Koper MTM, Tschulik K. 2023. A Versatile and Easy Method to Calibrate a Two-Compartment Flow Cell for Differential Electrochemical Mass Spectrometry Measurements. ACS Meas. Sci. Au 3: 277-86 (https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00009)
  10. Bondue CJ, Spallek M, Sobota L, Tschulik K. 2023. Electrochemical Aldehyde Oxidation at Gold Electrodes: gem-Diol, non-Hydrated Aldehyde, and Diolate as Electroactive Species. ChemSusChem 16: e202300685 ( https://doi.org/10.1002/cssc.202300685)
  11. Boucly A, Artiglia L, Fabbri E, Palagin D, Aegerter D, et al. 2022. Direct evidence of cobalt oxyhydroxide formation on a La0.2Sr0.8CoO3 perovskite water splitting catalyst. J. Mater. Chem. A 10: 2434-44 (https://doi.org/10.1039/D1TA04957G)
  12. Brocks C, Das CK, Duan JF, Yadav S, Apfel UP, et al. 2023. A Dynamic Water Channel Affects O<sub>2</sub> Stability in [FeFe]-Hydrogenases. ChemSusChem (https://doi.org/10.1002/cssc.202301365)
  13. Burian M, Pedrini BF, Ortiz Hernandez N, Ueda H, Vaz CAF, et al. 2021. Buried moiré supercells through SrTiO3 nanolayer relaxation. Phys. Rev. Res. 3: 013225 (https://link.aps.org/doi/10.1103/PhysRevResearch.3.013225)
  14. Burian M, Porer M, Mardegan JRL, Esposito V, Parchenko S, et al. 2021. Structural involvement in the melting of the charge density wave in 1T−TiSe2. Phys. Rev. Research 3: 013128 (https://link.aps.org/doi/10.1103/PhysRevResearch.3.013128)
  15. Comini N, Diulus JT, Parkinson GS, Osterwalder J, Novotny Z. 2023. Stability of Iridium Single Atoms on Fe3O4(001) in the mbar Pressure Range. J. Phys. Chem. C 127: 19097–106 (https://pubs.acs.org/doi/full/10.1021/acs.jpcc.3c03097)
  16. Corva M, Blanc N, Bondue CJ, Tschulik K. 2022. Differential Tafel Analysis: A Quick and Robust Tool to Inspect and Benchmark Charge Transfer in Electrocatalysis. ACS Catalysis 12: 13805–12 (https://pubs.acs.org/doi/10.1021/acscatal.2c03581)
  17. Das B, Ruiz-Barragan S, Marx D. 2023. Deciphering the Properties of Nanoconfined Aqueous Solutions by Vibrational Sum Frequency Generation Spectroscopy. J. Phys. Chem. Lett. 14: 1208-13 (https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03409)
  18. de Vos EW, Neb S, Niedermayr A, Burri F, Hollm M, et al. 2023. Ultrafast Transition from State-Blocking Dynamics to Electron Localization in Transition Metal $\ensuremath{\beta}$-Tungsten. Physical Review Letters 131: 226901 (https://link.aps.org/doi/10.1103/PhysRevLett.131.226901)
  19. Dhamija A, Das CK, Ko YH, Kim Y, Mukhopadhyay RD, et al. 2022. Remotely controllable supramolecular rotor mounted inside a porphyrinic cage. CHEM 8: 543-56 (https://doi.org/10.1016/j.chempr.2021.12.008)
  20. Diulus JT, Novotny Z, Dongfang NF, Beckord J, Al-Hamdani Y, et al. 2024. h-BN/Metal-Oxide Interface Grown by Intercalation: A Model System for Nano-Confined Catalysis. J. Phys. Chem. C 128: 5156-67 (https://pubs.acs.org/doi/10.1021/acs.jpcc.3c07828)
  21. Diulus JT, Tobler B, Osterwalder J, Novotny Z. 2021. Thermal oxidation of Ru(0001) to RuO2(110) studied with ambient pressure x-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 54: 244001 (http://dx.doi.org/10.1088/1361-6463/abedfd)
  22. Géneaux R, Chang H-T, Schwartzberg AM, Marroux HJB. 2021. Source noise suppression in attosecond transient absorption spectroscopy by edge-pixel referencing. Opt. Express 29: 951-60 (https://doi.org/10.1364/OE.412117)
  23. Ghiami-Shomami A, Haettig C. 2023. Performance of the COSMO solvation model for photoacidity and basicity in water. J. Comput. Chem. 44: 1941-55 (https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.27173)
  24. Gong X, Heck S, Jelovina D, Perry C, Zinchenko K, et al. 2022. Attosecond spectroscopy of size-resolved water clusters. Nature 609: 507–11 (https://doi.org/10.1038/s41586-022-05039-8)
  25. Gong XC, Jordan I, Huppert M, Heck S, Baykusheva D, et al. 2022. Attosecond Photoionization Dynamics: From Molecules over Clusters to the Liquid Phase. Chimia 76: 520-8 (https://doi.org/10.2533/chimia.2022.520)
  26. Goswami S, Veliz JCS, Upadhyay M, Bemish RJ, Meuwly M. 2022. Quantum and quasi-classical dynamics of the C(3P) + O2(3Σ −g) → CO(1Σ+) + O(1D) reaction on its electronic ground state. Phys. Chem. Chem. Phys. 24: 23309-22 (https://doi.org/10.1039/D2CP02840A)
  27. Grassin C, Santoro E, Merten C. 2022. 7-Azaindole breaks carboxylic acid dimers and simplifies VCD spectra analyses of natural products. Chem. Commun. 58: 11527-30 (http://dx.doi.org/10.1039/D2CC04433A)
  28. Grimes M, Gurung N, Ueda H, Porter DG, Pedrini B, et al. 2022. X-ray investigation of long-range antiferromagnetic ordering in FeRh. AIP Adv. 12: 035048 (https://doi.org/10.1063/9.0000320)
  29. Grimes M, Ueda H, Ozerov D, Pressacco F, Parchenko S, et al. 2022. Determination of sub-ps lattice dynamics in FeRh thin films. Sci. Rep. 12: 8584 (https://doi.org/10.1038/s41598-022-12602-w)
  30. Han M, Fedyk J, Ji J-B, Despré V, Kuleff AI, Wörner HJ. 2023. Observation of Nuclear Wave-Packet Interference in Ultrafast Interatomic Energy Transfer. Physical Review Letters 130: 253202 (https://link.aps.org/doi/10.1103/PhysRevLett.130.253202)
  31. Han M, Ge P, Wang J, Guo Z, Fang Y, et al. 2021. Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock. Nature Photon. 15: 765–71 (https://doi.org/10.1038/s41566-021-00842-7)
  32. Han M, Ji J-B, Leung CS, Ueda K, Wörner HJ. 2024. Separation of photoionization and measurement-induced delays. Science Advances 10: eadj2629 (https://doi.org/10.1126/sciadv.adj2629)
  33. Han M, Ji JB, Balciunas T, Ueda K, Worner HJ. 2023. Attosecond circular-dichroism chronoscopy of electron vortices. Nature Phys. 19: 230–6 (https://www.nature.com/articles/s41567-022-01832-4)
  34. Han M, Ji JB, Ueda K, Wörner HJ. 2023. Attosecond metrology in circular polarization. Optica 10: 1044-52 (https://doi.org/10.1364/OPTICA.492741)
  35. Heck S, Han M, Jelovina D, Ji JB, Perry C, et al. 2022. Two-Center Interference in the Photoionization Delays of Kr-2. Phys. Rev. Lett. 129: 133002 (https://doi.org/10.1103/PhysRevLett.129.133002)
  36. Jang H, Ueda H, Kim HD, Kim M, Shin KW, et al. 2023. 4D Visualization of a Nonthermal Coherent Magnon in a Laser Heated Lattice by an X-ray Free Electron Laser. Adv. Mater. 35: 2303032 (https://doi.org/10.1002/adma.202303032)
  37. Jelovina D, Scrinzi A, Wörner HJ, Schild A. 2021. Nonlocal mechanisms of attosecond interferometry in three-dimensional systems. J. Phys. Photon. 3: 014005 (https://doi.org/10.1088/2515-7647/abcd84)
  38. Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, et al. 2020. Attosecond spectroscopy of liquid water. Science 369: 974 (https://www.science.org/doi/abs/10.1126/science.abb0979)
  39. Kang BJ, Rohrbach D, Brunner FDJ, Bagiante S, Sigg H, Feurer T. 2022. Ultrafast and Low-Threshold THz Mode Switching of Two-Dimensional Nonlinear Metamaterials. Nano Lett. 5: 2016–22 (https://doi.org/10.1021/acs.nanolett.1c04776)
  40. Kang BJ, Rohwer EJ, Rohrbach D, Zyaee E, Akbarimoosavi M, et al. 2024. Time-resolved THz Stark spectroscopy of molecules in solution. Nature Communications 15: 4212 (https://doi.org/10.1038/s41467-024-48164-w)
  41. Karvounis A, Grange R. 2022. Electro-mechanical to optical conversion by plasmonic-ferroelectric nanostructures. Nanophoton. 11: 3993-4000 (https://doi.org/10.1515/nanoph-2022-0105)
  42. Karvounis A, Timpu F, Vogler-Neuling VV, Savo R, Grange R. 2020. Barium Titanate Nanostructures and Thin Films for Photonics. Adv. Opt. Mater. 8: 2001249 ( https://doi.org/10.1002/adom.202001249)
  43. Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. 2023. Neural network potentials for chemistry: concepts, applications and prospects. Digital Discovery 2: 28-58 (http://dx.doi.org/10.1039/D2DD00102K)
  44. Knop J-M, Mukherjee SK, Oliva R, Möbitz S, Winter R. 2020. Remodeling of the Conformational Dynamics of Noncanonical DNA Structures by Monomeric and Aggregated α-Synuclein. J. Am. Chem Soc. 142: 18299-303 (https://doi.org/10.1021/jacs.0c07192)
  45. Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, et al. 2023. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure?A Physicochemical View. Chem. Rev. 123: 73-104 (https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00491)
  46. Knop JM, Mukherjee SK, Gault S, Cockell CS, Winter R. 2022. Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions. Life-Basel 12: 677 (https://doi.org/10.3390/life12050677)
  47. Liang JT, Han M, Liao YJ, Ji JB, Leung CS, et al. 2024. Attosecond-resolved non-dipole photoionization dynamics. Nature Photon. (https://www.nature.com/articles/s41566-023-01349-z)
  48. Liu K, Réhault J, Liang B, Hambsch M, Zhang Y, et al. 2023. A Quasi-2D Polypyrrole Film with Band-Like Transport Behavior and High Charge-Carrier Mobility. Adv. Mater. 35(https://doi.org/10.1002/adma.202303288)
  49. Liu ZB, Amin HMA, Peng YM, Corva M, Pentcheva R, Tschulik K. 2023. Facet-Dependent Intrinsic Activity of Single Co3O4 Nanoparticles for Oxygen Evolution Reaction. Adv. Funct. Mater. 33: 2210945 (https://doi.org/10.1002/adfm.202210945)
  50. Löscher R, Moreno V, Adamou D, Kesim DK, Schroeder MC, et al. 2023. High-power sub-picosecond filamentation at 1.03 µm with high repetition rates between 10 and 100 kHz. APL Photonics 8: 111303 (https://doi.org/10.1063/5.0175100)
  51. Mankowsky R, Sander M, Zerdane S, Vonka J, Bartkowiak M, et al. 2021. New insights into correlated materials in the time domain-combining far-infrared excitation with x-ray probes at cryogenic temperatures. J. Phys. Condens. Matter 33: 34098537 (https://doi.org/10.1088/1361-648x/ac08b5)
  52. Millon C, Houver S, Saraceno CJ. 2023. 400 kHz repetition rate THz-TDS with 24 mW of average power driven by a compact industrial Yb-laser. Opt. Express 31: 7922-32 (https://doi.org/10.1364/OE.476261)
  53. Millon C, Schmidt J, Ramos S, van Dam EP, Buchmann A, et al. 2022. Temperature-independent non-linear terahertz transmission by liquid water. AIP Adv. 12: 115319 (https://doi.org/10.1063/5.0120417)
  54. Misawa R, Arakawa K, Ueda H, Nakajima H, Mori S, et al. 2022. Magnetic domains in two distinct antiferromagnetic phases of CuO. Phys. Rev. B 106: 106401 (https://doi.org/10.1103/PhysRevB.106.104401)
  55. Misawa R, Ueda H, Kimura K, Tanaka Y, Kimura T. 2021. Chirality and magnetic quadrupole order in Pb(TiO)Cu4(PO4)4 probed by interference scattering in resonant x-ray diffraction. Phys. Rev. B 103: 174409 (https://link.aps.org/doi/10.1103/PhysRevB.103.174409)
  56. Mukherjee S, Ramos S, Pezzotti S, Kalarikkal A, Prass TM, et al. 2024. Entropy Tug-of-War Determines Solvent Effects in the Liquid-Liquid Phase Separation of a Globular Protein. J. Phys. Chem. Lett. 15: 4047-55 (https://doi.org/10.1021/acs.jpclett.3c03421)
  57. Mukherjee S, Schäfer LV. 2022. Spatially Resolved Hydration Thermodynamics in Biomolecular Systems. J. Phys. Chem. B 126: 3619-31 (https://doi.org/10.1021/acs.jpcb.2c01088)
  58. Mukherjee S, Schäfer LV. 2023. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Nature Commun. 14: 5892 (https://doi.org/10.1038/s41467-023-41586-y)
  59. Mukherjee SK, Knop J-M, Winter R. 2022. High-Pressure Single-Molecule Studies on Non-canonical Nucleic Acids and Their Interactions In Handbook of Chemical Biology of Nucleic Acids, ed. N Sugimoto, pp. 1-34. Singapore: Springer Nature Singapore
  60. Mukherjee SK, Knop JM, Oliva R, Mobitz S, Winter R. 2021. Untangling the interaction of alpha-synuclein with DNA i-motifs and hairpins by volume-sensitive single-molecule FRET spectroscopy. RSC Chem. Biol. 2: 1196-200 (https://doi.org/10.1039/D1CB00108F)
  61. Mukherjee SK, Knop JM, Winter R. 2022. Modulation of the Conformational Space of SARS-CoV-2 RNA Quadruplex RG-1 by Cellular Components and the Amyloidogenic Peptides alpha-Synuclein and hIAPP. Chem. Eur. J. 28: e202104182 (https://doi.org/10.1002/chem.202104182)
  62. Najafishirtari S, Ortega KF, Douthwaite M, Pattisson S, Hutchings GJ, et al. 2021. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chem. A Eur. J. 27: 16809-33 (https://doi.org/10.1002/chem.202102868)
  63. Niedermayr A, Volkov M, Sato SA, Hartmann N, Schumacher Z, et al. 2022. Few-Femtosecond Dynamics of Free-Free Opacity in Optically Heated Metals. Physical Review X 12: 021045 (https://link.aps.org/doi/10.1103/PhysRevX.12.021045)
  64. Nunes FB, Comini N, Diulus JT, Huthwelker T, Iannuzzi M, et al. 2023. Dynamic Equilibrium at the HCOOH-Saturated TiO2(110)-Water Interface. J. Phys. Chem. Lett.: 3132-8 (https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03788)
  65. Olari LR, Bauer R, Miró MG, Vogel V, Rayas LC, et al. 2023. The C-terminal 32-mer fragment of hemoglobin alpha is an amyloidogenic peptide with antimicrobial properties. Cellular and Molecular Life Sciences 80: 151 (https://doi.org/10.1007/s00018-023-04795-8)
  66. Oliva R, Jahmidi-Azizi N, Mukherjee S, Winter R. 2021. Harnessing Pressure Modulation for Exploring Ligand Binding Reactions in Cosolvent Solutions. J. Phys. Chem. B 125: 539-46 (https://doi.org/10.1021/acs.jpcb.0c10212)
  67. Oliva R, Mukherjee S, Manisegaran M, Campanile M, Del Vecchio P, et al. 2022. Binding Properties of RNA Quadruplex of SARS-CoV-2 to Berberine Compared to Telomeric DNA Quadruplex. Int. J. Mol. Sci. 23: 5690 (https://doi.org/10.3390/ijms23105690)
  68. Oliva R, Mukherjee SK, Ostermeier L, Pazurek LA, Kriegler S, et al. 2021. Remodeling of the Fibrillation Pathway of alpha-Synuclein by Interaction with Antimicrobial Peptide LL-III. Chem. A Eur. J. 27: 11845-51 (https://doi.org/10.1002/chem.202101592)
  69. Ortiz Hernández N, Parchenko S, Mardegan JRL, Porer M, Schierle E, et al. 2021. Magnetic field dependent cycloidal rotation in pristine and Ge-doped CoCr2O4. Phys. Rev. B 103: 085123 (https://link.aps.org/doi/10.1103/PhysRevB.103.085123)
  70. Osorio-Valeriano M, Altegoer F, Das CK, Steinchen W, Panis G, et al. 2021. The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Molecular Cell 81: 3992-4007 (https://doi.org/10.1016/j.molcel.2021.09.004)
  71. Parchenko S, Frej A, Ueda H, Carley R, Mercadier L, et al. 2023. Transient Non-Collinear Magnetic State for All-Optical Magnetization Switching. Advanced Science 10: 2302550 (https://doi.org/10.1002/advs.202302550)
  72. Päslack C, Das CK, Schlitter J, Schäfer LV. 2021. Spectrally Resolved Estimation of Water Entropy in the Active Site of Human Carbonic Anhydrase II. J. Chem. Theory Comput. 17: 5409-18 (https://doi.org/10.1021/acs.jctc.1c00554)
  73. Pezzotti S, Konig B, Ramos S, Schwaab G, Havenith M. 2023. Liquid-Liquid Phase Separation? Ask the Water! J. Phys. Chem. Lett. 14: 1556-63 (https://doi.org/10.1021/acs.jpclett.2c02697)
  74. Pezzotti S, Sebastiani F, van Dam EP, Ramos S, Nibali VC, et al. 2022. Spectroscopic Fingerprints of Cavity Formation and Solute Insertion as a Measure of Hydration Entropic Loss and Enthalpic Gain. Angew. Chem. Int. Ed. 61: e202203893 (https://doi.org/10.1002/anie.202203893)
  75. Piontek SM, Borguet E. 2022. Vibrational Dynamics at Aqueous-Mineral Interfaces. J. Phys. Chem. C 126: 2307-24 (https://pubs.acs.org/doi/10.1021/acs.jpcc.1c08563)
  76. Piontek SM, Borguet E. 2023. Vibrational spectroscopy of geochemical interfaces. Surface Science Reports: 100606 (https://www.sciencedirect.com/science/article/pii/S0167572923000213)
  77. Piontek SM, Naujoks D, Tabassum T, DelloStritto MJ, Jaugstetter M, et al. 2023. Probing the Gold/Water Interface with Surface-Specific Spectroscopy. ACS Physical Chemistry Au 3: 119-29 (https://doi.org/10.1021/acsphyschemau.2c00044)
  78. Ramos S, Kamps J, Pezzotti S, Winklhofer KF, Tatzelt J, Havenith M. 2023. Hydration makes a difference! How to tune protein complexes between liquid–liquid and liquid–solid phase separation. Phys. Chem. Chem. Phys. 25: 28063-9 (http://dx.doi.org/10.1039/D3CP03299J)
  79. Rouxel JR, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, et al. 2021. Hard X-ray transient grating spectroscopy on bismuth germanate. Nature Photon. 15: 499-503 (https://doi.org/10.1038/s41566-021-00797-9)
  80. Runeson JE, Mannouch JR, Amati G, Fiechter MR, Richardson JO. 2022. Spin-Mapping Methods for Simulating Ultrafast Nonadiabatic Dynamics. Chimia 76: 582-8 (https://doi.org/10.2533/chimia.2022.582 )
  81. Rutz A, Das CK, Fasano A, Jaenecke J, Yadav S, et al. 2023. Increasing the O2 Resistance of the FeFe -Hydrogenase CbA5H through Enhanced Protein Flexibility. ACS Catalysis 13: 856-65 (https://pubs.acs.org/doi/10.1021/acscatal.2c04031)
  82. Saraswat M, Portela-Gonzalez A, Karir G, Mendez-Vega E, Sander W, Hemberger P. 2023. Thermal Decomposition of 2- and 4-Iodobenzyl Iodide Yields Fulvenallene and Ethynylcyclopentadienes: A Joint Threshold Photoelectron and Matrix Isolation Spectroscopic Study. The Journal of Physical Chemistry A 127: 8574-83 (https://doi.org/10.1021/acs.jpca.3c04688)
  83. Saraswat M, Portela-Gonzalez A, Mendez-Vega E, Karir G, Sander W, Hemberger P. 2023. Photoelectron spectroscopic study of 2-naphthylnitrene and its thermal rearrangement to cyanoindenes. Phys. Chem. Chem. Phys. 25: 31146-52 (https://doi.org/10.1039/D3CP04064J)
  84. Saw EN, Kanokkanchana K, Amin HMA, Tschulik K. 2022. Unravelling Anion Solvation in Water-Alcohol Mixtures by Single Entity Electrochemistry. Chemelectrochem 9: e202200197 (https://doi.org/10.1002/celc.202200197)
  85. Schumacher Z, Sato SA, Neb S, Niedermayr A, Gallmann L, et al. 2023. Ultrafast electron localization and screening in a transition metal dichalcogenide. Proc. Natl. Acad. Sci. USA 120: e2221725120 (https://doi.org/10.1073/pnas.2221725120)
  86. Schweizer T, Nicolau BG, Cavassin P, Feurer T, Banerji N, Rehault J. 2020. High-resolution phase-sensitive sum frequency generation spectroscopy by time-domain ptychography. Opt. Lett. 45: 6082-5 (https://doi.org/10.1364/OL.403339)
  87. Singh H, Das CK, Vasa SK, Grohe K, Schäfer LV, Linser R. 2020. The Active Site of a Prototypical “Rigid” Drug Target is Marked by Extensive Conformational Dynamics. Angew. Chem. Int. Ed. 59: 22916-21 (https://doi.org/10.1002/anie.202009348)
  88. Singh H, Vasa SK, Jangra H, Rovó P, Päslack C, et al. 2019. Fast Microsecond Dynamics of the Protein–Water Network in the Active Site of Human Carbonic Anhydrase II Studied by Solid-State NMR Spectroscopy. J. Am. Chem Soc. 141: 19276-88 (https://doi.org/10.1021/jacs.9b05311)
  89. Sobota L, Bondue CJ, Hosseini P, Kaiser C, Spallek M, Tschulik K. 2023. Impact of the Electrochemically Inert Furan Ring on the Oxidation of the Alcohol and Aldehyde Functional Group of 5-Hydroxymethylfurfural (HMF). ChemElectroChem (https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/celc.202300151)
  90. Taskin M, Novotny Z, Comini N, Diulus JT, Hengsberger M, et al. 2023. Surface electronic structure of Ni-doped Fe3O4(001). Phys. Rev. B 108(https://doi.org/10.1103/PhysRevB.108.155403)
  91. Thomas J, Bertram C, Daru J, Patwari J, Langguth I, et al. 2021. Competition between Coulomb and van der Waals Interactions in Xe-Cs+ Aggregates on Cu(111) Surfaces. Phys. Rev. Lett. 127: 266802 (https://doi.org/10.1103/PhysRevLett.127.266802)
  92. Thomas J, Patwari J, Langguth IC, Penschke C, Zhou P, et al. 2023. Femtosecond Electron-Transfer Dynamics across the D2O/Cs+/Cu(111) Interface: The Impact of Hydrogen Bonding. The Journal of Physical Chemistry C 127: 23467-74 (https://doi.org/10.1021/acs.jpcc.3c06172)
  93. Töpfer K, Käser S, Meuwly M. 2022. Double proton transfer in hydrated formic acid dimer: Interplay of spatial symmetry and solvent-generated force on reactivity. Physical Chemistry Chemical Physics 24: 13869-82 (http://dx.doi.org/10.1039/D2CP01583H)
  94. Töpfer K, Koner D, Erramilli S, Ziegler LD, Meuwly M. 2023. Molecular-level understanding of the rovibrational spectra of N2O in gaseous, supercritical, and liquid SF6 and Xe. J. Chem. Phys. 158: 144302 (https://doi.org/10.1063/5.0143395)
  95. Töpfer K, Pasti A, Das A, Salehi SM, Vazquez-Salazar LI, et al. 2022. Structure, Organization, and Heterogeneity of Water-Containing Deep Eutectic Solvents. J. Am. Chem Soc. 144: 14170-80 (https://doi.org/10.1021/jacs.2c04169)
  96. Töpfer K, Upadhyay M, Meuwly M. 2022. Quantitative molecular simulations. Physical Chemistry Chemical Physics 24: 12767-86 (http://dx.doi.org/10.1039/D2CP01211A)
  97. Ueda H, García-Fernández M, Agrestini S, Romao CP, van den Brink J, et al. 2023. Chiral phonons in quartz probed by X-rays. Nature 618: 946-50 (https://www.nature.com/articles/s41586-023-06016-5)
  98. Ueda H, Jang H, Chun SH, Kim HD, Kim M, et al. 2022. Optical excitation of electromagnons in hexaferrite. Phys. Rev. Res. 4: 023007 (https://doi.org/10.1103/PhysRevResearch.4.023007)
  99. Ueda H, Porer M, Mardegan JRL, Parchenko S, Gurung N, et al. 2021. Correlation between electronic and structural orders in 1T−TiSe2. Phys. Rev. Res. 3: L022003 (https://link.aps.org/doi/10.1103/PhysRevResearch.3.L022003)
  100. Ueda H, Skoropata E, Burian M, Ukleev V, Perren GS, et al. 2022. Conical spin order with chiral quadrupole helix in CsCuCl3. Phys. Rev. B 105: 144408 (https://doi.org/10.1103/PhysRevB.105.144408)
  101. Ueda H, Skoropata E, Piamonteze C, Hernandez NO, Burian M, et al. 2022. Unusual ferrimagnetism in CaFe2O4. Phys. Rev. Mater. 6: 124405 (https://doi.org/10.1103/PhysRevMaterials.6.124405)
  102. Upadhyay M, Töpfer K, Meuwly M. 2024. Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of syn-Acetaldehyde Oxide. The Journal of Physical Chemistry Letters 15: 90-6 (https://doi.org/10.1021/acs.jpclett.3c03131)
  103. van Dam EP, Konig B, Ramos S, Adams EM, Schwaab G, Havenith M. 2022. Observation of dissipating solvated protons upon hydrogel formation. Phys. Chem. Chem. Phys. 24: 27893-9 (https://doi.org/10.1039/D2CP01949C)
  104. Vogler-Neuling VV, Karvounis A, Morandi A, Weigand H, Denervaud E, Grange R. 2022. Photonic Assemblies of Randomly Oriented Nanocrystals for Engineered Nonlinear and Electro-Optic Effects. ACS Photon. 9: 2193-203 (https://doi.org/10.1021/acsphotonics.2c00081)
  105. Volkov M, Sato SA, Niedermayr A, Rubio A, Gallmann L, Keller U. 2023. Floquet-Bloch resonances in near-petahertz electroabsorption spectroscopy of SiO2. Physical Review B 107: 184304 (https://link.aps.org/doi/10.1103/PhysRevB.107.184304)
  106. Waters MDJ, Ng ZX, Monahan NR, Wörner HJ. 2023. Ultrafast Imaging of the Jahn-Teller Topography in Carbon Tetrachloride. J. Am. Chem Soc. 145: 7659-66 (https://doi.org/10.1021/jacs.3c01800)
  107. Weigand H, Vogler-Neuling VV, Escale MR, Pohl D, Richter FU, et al. 2021. Enhanced Electro-Optic Modulation in Resonant Metasurfaces of Lithium Niobate. ACS Photon. 8: 3004-9 (https://doi.org/10.1021/acsphotonics.1c00935)
  108. Yamagami K, Ueda H, Staub U, Zhang Y, Yamamoto K, et al. 2024. 4f electron temperature driven ultrafast electron localization. Phys. Rev. Res. 6: 023099 (https://link.aps.org/doi/10.1103/PhysRevResearch.6.023099)